Design of Nonfragile State Estimator for Discrete-Time Genetic Regulatory Networks Subject to Randomly Occurring Uncertainties and Time-Varying Delays

Author:

Zhao Yanfeng12ORCID,Shen Jihong3,Chen Dongyan4ORCID

Affiliation:

1. College of Automation, Harbin Engineering University, Harbin 150001, China

2. Graduate Department, Harbin University of Science and Technology, Harbin 150080, China

3. College of Science, Harbin Engineering University, Harbin 150001, China

4. College of Science, Harbin University of Science and Technology, Harbin 150080, China

Abstract

We deal with the design problem of nonfragile state estimator for discrete-time genetic regulatory networks (GRNs) with time-varying delays and randomly occurring uncertainties. In particular, the norm-bounded uncertainties enter into the GRNs in random ways in order to reflect the characteristic of the modelling errors, and the so-called randomly occurring uncertainties are characterized by certain mutually independent random variables obeying the Bernoulli distribution. The focus of the paper is on developing a new nonfragile state estimation method to estimate the concentrations of the mRNA and the protein for considered uncertain delayed GRNs, where the randomly occurring estimator gain perturbations are allowed. By constructing a Lyapunov-Krasovskii functional, a delay-dependent criterion is obtained in terms of linear matrix inequalities (LMIs) by properly using the discrete-time Wirtinger-based inequality and reciprocally convex combination approach as well as the free-weighting matrix method. It is shown that the proposed method ensures that the estimation error dynamics is globally asymptotically stable and the desired estimator parameter is designed via the solutions to certain LMIs. Finally, we provide two numerical examples to illustrate the feasibility and validity of the proposed estimation results.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3