Video Genre Classification Using Weighted Kernel Logistic Regression

Author:

Hamed Ahmed A. M.12ORCID,Li Renfa1,Xiaoming Zhang1ORCID,Xu Cheng1

Affiliation:

1. Hunan University, Changsha 410082, China

2. University of Bahri, Khartoum 11123, Sudan

Abstract

Due to the widening semantic gap of videos, computational tools to classify these videos into different genre are highly needed to narrow it. Classifying videos accurately demands good representation of video data and an efficient and effective model to carry out the classification task. Kernel Logistic Regression (KLR), kernel version of logistic regression (LR), proves its efficiency as a classifier, which can naturally provide probabilities and extend to multiclass classification problems. In this paper, Weighted Kernel Logistic Regression (WKLR) algorithm is implemented for video genre classification to obtain significant accuracy, and it shows accurate and faster good results.

Publisher

Hindawi Limited

Subject

General Computer Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection of Driver’s Drowsiness in a Video based on Deep Features;2024 5th International Conference on Innovative Trends in Information Technology (ICITIIT);2024-03-15

2. Real-Time Detection of Sports Broadcasts Using Video Content Analysis;Smart Algorithms for Multimedia and Imaging;2021

3. Fast method of video genre categorization for temporally aggregated broadcast videos;Journal of Intelligent & Fuzzy Systems;2019-12-23

4. A Novel Video Genre Classification Algorithm by Keyframe Relevance;Information and Communication Technology for Intelligent Systems;2018-12-30

5. Color-independent classification of animation video;International Journal of Multimedia Information Retrieval;2018-01-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3