A Performance Tuning Methodology with Compiler Support

Author:

Hernandez Oscar1,Chapman Barbara1,Jin Haoqiang2

Affiliation:

1. Computer Science Department, University of Houston, Houston, TX, USA

2. NASA Advanced Supercomputing Division, NASA Ames Research Center, Moffet Field, CA, USA

Abstract

We have developed an environment, based upon robust, existing, open source software, for tuning applications written using MPI, OpenMP or both. The goal of this effort, which integrates the OpenUH compiler and several popular performance tools, is to increase user productivity by providing an automated, scalable performance measurement and optimization system. In this paper we describe our environment, show how these complementary tools can work together, and illustrate the synergies possible by exploiting their individual strengths and combined interactions. We also present a methodology for performance tuning that is enabled by this environment. One of the benefits of using compiler technology in this context is that it can direct the performance measurements to capture events at different levels of granularity and help assess their importance, which we have shown to significantly reduce the measurement overheads. The compiler can also help when attempting to understand the performance results: it can supply information on how a code was translated and whether optimizations were applied. Our methodology combines two performance views of the application to find bottlenecks. The first is a high level view that focuses on OpenMP/MPI performance problems such as synchronization cost and load imbalances; the second is a low level view that focuses on hardware counter analysis with derived metrics that assess the efficiency of the code. Our experiments have shown that our approach can significantly reduce overheads for both profiling and tracing to acceptable levels and limit the number of times the application needs to be run with selected hardware counters. In this paper, we demonstrate the workings of this methodology by illustrating its use with selected NAS Parallel Benchmarks and a cloud resolving code.

Funder

National Science Foundation

Publisher

Hindawi Limited

Subject

Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3