Synthesis, Structure, Electrochemistry, and Cytotoxic Properties of Ferrocenyl Ester Derivatives

Author:

Gao Li Ming1,Hernández Ramón1,Matta Jaime2,Meléndez Enrique1

Affiliation:

1. Department of Chemistry, University of Puerto Rico, P.O. Box 9019, Mayagüez, PR 00681, USA

2. Department of Pharmacology, Toxicology and Physiology, Ponce School of Medicine, P.O. Box 7004, Ponce, PR 00732, USA

Abstract

A series of ferrocenyl ester complexes, varying the lipophilic character of the pendant groups, was prepared and characterized by spectroscopic and analytical methods. The syntheses of Fe(C5H4CO2CH3)2, Fe(CpCOOCH3) (CpCOO CH2CH3), and Fe(CpCOOCH2CH3)2 are reported. The solid-state structure of Fe(C5H4CO2CH3)2 has been determined by X-ray crystallography. Fe(C5H4CO2CH3)2 has the cyclopentadienyl rings virtually in an eclipsed conformation with the pendant groups not completely opposite to each other. Cyclic voltammetry characterization showed that the functionalized ferrocenes oxidize at potentials, Epa, higher than ferrocene as a result of the electro withdrawing effect of the pendant groups on the cyclopentadienyl ligand. The cytotoxicities of Fe(C5H4CO2CH2CH2OH)2, Fe(C5H4CO2CH2CH=CH2)2, Fe(C5H4CO2CH3)2, Fe(CpCOOCH3)(CpCOOCH2CH3), and Fe(CpCOOCH2CH3)2 in colon cancer HT-29 and breast cancer MCF-7 cell lines were measured by the MTT biological viability assay and compared to ferrocene and ferrocenium. Fe(C5H4CO2CH2CH=CH2)2 showed the best IC50 values, 180(10)  μM for HT-29 and 190(30)  μM for MCF-7 cell lines, with cytotoxicities similar to ferrocenium. The cytotoxic data suggest that as we increase the lipophilic character of the functionalized ferrocene, the cytotoxicity improves approaching to the cytotoxic activity of ferrocenium.

Publisher

Hindawi Limited

Subject

Inorganic Chemistry,Drug Discovery,Pharmacology,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3