An Efficient AP-ANN-Based Multimethod Fusion Model to Detect Stress through EEG Signal Analysis

Author:

K Saranya1ORCID,S Jayanthy2ORCID

Affiliation:

1. Department of Information Science and Engineering, Kumaraguru College of Technology, Coimbatore 641049, India

2. Department of Electronics and Communication Engineering, Sri Ramakrishna Engineering College, Coimbatore 641022, India

Abstract

Stress is a universal emotion that every human experiences daily. Psychologists say stress may lead to heart attack, depression, hypertension, strokes, or even sudden death. Many technical explorations like stress detection through facial expression, speech, text, physical behaviors, etc., were explored, but no consensus has been reached on the best method. The advancement in biomedical engineering yielded a rapid development of electroencephalogram (EEG) signal analysis that has inspired the idea of a multimethod fusion approach for the first time which employs multiple techniques such as discrete wavelet transform (DWT) for de-noising, adaptive synthetic sampling (ADASYN) for class balancing, and affinity propagation (AP) as a stratified sampling model along with the artificial neural network (ANN) as the classifier model for human emotion classification. From the EEG recordings of the DEAP dataset, the artifacts are removed, the signal is decomposed using a DWT, and features are extracted and fused to form the feature vector. As the dataset is high-dimensional, feature selection is done and ADASYN is used to address the imbalance of classes resulting in large-scale data. The innovative idea of the proposed system is to perform sampling using affinity propagation as a stratified sampling-based clustering algorithm as it determines the number of representative samples automatically which makes it superior to the K-Means, K-Medoid, that requires the K-value. Those samples are used as inputs to various classification models, the comparison of the AP-ANN, AP-SVM, and AP-RF is done, and their most important five performance metrics such as accuracy, precision, recall, F1-score, and specificity were compared. From our experiment, the AP-ANN model provides better accuracy of 86.8% and greater precision of 85.7%, a higher F1 score of 84.9%, a recall rate of 84.1%, and a specificity value of 89.2% which altogether provides better results than the other existing algorithms.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3