Inhibition Effect of Natural Pozzolan and Zinc Phosphate Baths on Reinforcing Steel Corrosion

Author:

al-Swaidani Aref M.1ORCID

Affiliation:

1. Associate Professor, Faculty of Architectural Engineering, Arab International (Formerly European) University, Damascus, Syria

Abstract

Zinc phosphate (ZnP) baths are widely used for increasing corrosion resistance and surface preparation for painting. Studies on exploiting these baths in the reinforced concrete (RC) are still in the early stages. This is probably due to the shortcomings, such as the alkaline instability and high porosity of the obtained coatings. Use of natural pozzolan (NP) as cement replacement is growing rapidly due to its economic, ecological, and technical benefits. The combined effect of using ZnP baths and NP-based cement on the resistance of concrete against damage caused by corrosion has been investigated. Four phosphating baths were prepared: ZnP, ZnP-Ni, ZnP-Cu, and ZnP-Mn. Steel specimens were phosphated at 55-60°C for 15 min. Concrete specimens were produced with four different levels of NP: 0% (control), 10 %, 20%, and 30%. The investigation was carried out using RC specimens where a constant anodic potential was impressed after 28 and 90 days of concrete curing. The electrochemical behavior of the coated steel has further been evaluated in chloride contaminated Ca(OH)2 saturated solution (CH-Cl) using the open circuit potential (OCP), the potentiodynamic polarization, and the polarization resistance with time. The bond strength between the coated steel and concrete has been evaluated by the pull-out test. Test results showed that concrete containing NP at higher replacement levels and steel specimens treated in bication baths exhibited corrosion initiation times several times longer than the control concrete with uncoated steel. In addition, the best corrosion performance was noted in the steel specimen treated in the ZnP-Cu bath. Its corrosion density was about twentyfold lower with respect to the bare steel, and its inhibition efficiency exceeded 95% in (CH-Cl) solution. In addition, its polarization resistance was about fifteenfold lower with respect to the bare steel. SEM, EDX, and XRD techniques have been employed, as well.

Publisher

Hindawi Limited

Subject

Process Chemistry and Technology,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3