The Traditional Chinese Medicine Formula FTZ Protects against Cardiac Fibrosis by Suppressing the TGFβ1-Smad2/3 Pathway

Author:

Zhang Yue1ORCID,Wang Dongwei1ORCID,Wu Kaili1ORCID,Shao Xiaoqi1ORCID,Diao Hongtao1ORCID,Wang Zhiying1ORCID,Sun Mengxian1ORCID,Huang Xueying1ORCID,Li Yun1ORCID,Tang Xinyuan1ORCID,Yan Meiling1ORCID,Guo Jiao2345ORCID

Affiliation:

1. Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, China

2. Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangzhou 510006, China

3. Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Beijing, China

4. Institute of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China

5. Guangdong TCM Key Laboratory for Metabolic Diseases, Guangzhou 510006, China

Abstract

Background. Fu fang Zhen Zhu Tiao Zhi (FTZ) is a patented preparation of Chinese herbal medicine that has been used as a natural medicine to treat several chronic diseases including cardiovascular disease. However, its effects on cardiac fibrosis remain unclear. Therefore, this study was designed to investigate the effects and potential mechanisms of FTZ in treating cardiac fibrosis. Methods. FTZ was administered to mice by oral gavage daily at a dosage of 1.2 g/kg or 2.4 g/kg of body weight for 7 weeks after a transverse aorta constriction (TAC) surgery. Doppler echocardiography, hematoxylin and eosin staining, and Masson’s trichrome staining were used to assess the effect of FTZ on the cardiac structure and function of mice that had undergone TAC. EdU and wound-healing assays were performed to measure the proliferative and migratory abilities of cardiac fibroblasts. Western blotting and qRT-PCR were used to determine the expression of TGFβ1, Col1A2, Col3, and α-SMA proteins and mRNA levels. Results. FTZ treatment reduced collagen synthesis, attenuated cardiac fibrosis, and improved cardiac function in mice subjected to TAC. Moreover, FTZ treatment prevented the proliferation and migration of cardiac fibroblasts and reduced Ang-II-induced collagen synthesis. Furthermore, FTZ downregulated the expression of TGFβ1, p-smad2, and p-smad3 and inhibited the TGFβ1-Smad2/3 pathway in the setting of cardiac fibrosis. Conclusion. FTZ alleviated the proliferation and migration of cardiac fibroblasts and suppressed collagen synthesis via the TGFβ1-Smad2/3 pathway during the progression of cardiac fibrosis. These findings indicated the therapeutic potential of FTZ in treating cardiac fibrosis.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3