Synthesis of Graphene Oxide-Polystyrene Graft Polymer Based on Reversible Addition Fragmentation Chain Transfer and Its Effect on Properties, Crystallization, and Rheological Behavior of Poly (Lactic Acid)

Author:

Yang Li1,Zhen Weijun1ORCID

Affiliation:

1. Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 830046, China

Abstract

Graphene oxide-polystyrene graft polymer (SGO-PS) was prepared by reversible addition-fragmentation chain transfer radical polymerization method. Orthogonal experiments indicated that the optimum synthesis reaction conditions for SGO-PS were as follows: the millimole ratio of chain transfer agent to initiator was 0.15 : 0.3, and the amount of styrene was 8 mL at 80°C for 12 hours. The products were characterized by Fourier transform infrared spectroscopy and thermal weightlessness analysis, and the highest grafting rate of SGO-PS was 62.46%. Then, PLA/SGO-PS nanocomposites were prepared using SGO-PS as fillers by melt intercalation method, and its crystallinity, mechanical properties, and thermal stability were significantly improved. Compared with pure PLA, the crystallinity of PLA/SGO-PS (0.3 wt%) nanocomposites was increased by 5 times. Multiple melting behavior tests showed that the introduction of SGO-PS caused the PLA molecular chain to be discharged into the unit cell in time, and the melting temperature shifted to a higher temperature, which ultimately made the grain structure of PLA composites more complete and stable than pure PLA. The rheological performance test showed that the uniform dispersion of SGO-PS in the PLA matrix inhibited the free movement of the PLA molecular chain and caused higher flow resistance, resulting in an increase in the complex viscosity, storage modulus, and loss modulus of PLA/SGO-PS.

Funder

University Research Program of Xinjiang Uygur Autonomous Region of China

Publisher

Hindawi Limited

Subject

Polymers and Plastics,Organic Chemistry,General Chemical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3