Facile Solvothermal Synthesis of NiO/g-C3N4 Nanocomposite for Enhanced Supercapacitor Application

Author:

Pai Shri Hari S.1ORCID,Sasmal Ananta1ORCID,Nayak Arpan Kumar12ORCID,Han HyukSu2ORCID

Affiliation:

1. Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014 Tamil Nadu, India

2. Department of Energy Engineering, Konkuk University, 120 Neungdong-ro, Seoul 05029, Republic of Korea

Abstract

There is a desperate demand for efficient energy storage systems to fulfill future energy demands. Herein, we exemplify a facile solvothermal approach followed by heat treatment to synthesize NiO/g-C3N4 nanocomposites for enhanced supercapacitor applications. The molar ratio of g-C3N4 is varied to achieve numerous nanostructures like nanoparticles and nanorods with optimum specific capacitance. Further, all as-prepared electrode materials are examined for supercapacitor application. The electrochemical behavior of prepared NiO/g-C3N4 nanocomposites is carried out under cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) in a three-electrode cell under different electrolytes such as aqueous sodium sulphate electrolyte (1.0 M Na2SO4) and potassium hydroxide electrolyte (3.0 M KOH). Among all the electrode materials, NO-4 (1 : 2) shows the highest specific capacitance of 338.68 F/g at a scan rate of 2 mV/s and 161.3 F/g at a current density of 1 A/g in 1.0 M Na2SO4 electrolyte. Also, this electrode material shows 95.22 F/g at a scan rate of 2 mV/s in 3.0 M KOH electrolyte. The excessive specific capacitance of this electrode material is due to retarded charge transfer resistance in the interface at the electrode and electrolyte and a increased number of active sites. The investigation of the electrokinetics of all the prepared electrodes was also carried out, and it revealed the charge storage contribution of capacitive and diffusive parts which levitates the higher specific capacitance. The two-electrode study for evaluating supercapacitor performance is studied. The NO-4//NO-4 SSD in 1.0 M Na2SO4 electrolyte shows 18.23 F/g at a specific capacitance of 1 A/g with a corresponding energy density of 10.13 Wh/kg and a power density of 1.01 kW/kg, respectively.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Energy Engineering and Power Technology,Fuel Technology,Nuclear Energy and Engineering,Renewable Energy, Sustainability and the Environment

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3