Hierarchical Key Management Scheme with Probabilistic Security in a Wireless Sensor Network (WSN)

Author:

Albakri Ashwag12ORCID,Harn Lein1,Song Sejun1

Affiliation:

1. Department of Computer Science Electrical Engineering, University of Missouri–Kansas City, Kansas City, MO 64110, USA

2. Department of Computer Science, Jazan University, 45142, Saudi Arabia

Abstract

Securing data transferred over a WSN is required to protect data from being compromised by attackers. Sensors in the WSN must share keys that are utilized to protect data transmitted between sensor nodes. There are several approaches introduced in the literature for key establishment in WSNs. Designing a key distribution/establishment scheme in WSNs is a challenging task due to the limited resources of sensor nodes. Polynomial-based key distribution schemes have been proposed in WSNs to provide a lightweight solution for resource-constraint devices. More importantly, polynomial-based schemes guarantee that a pairwise key exists between two sensors in the WSNs. However, one problem associated with all polynomial-based approaches in WSNs is that they are vulnerable to sensor capture attacks. Specifically, the attacker can compromise the security of the entire network by capturing a fixed number of sensors. In this paper, we propose a novel polynomial-based scheme with a probabilistic security feature that effectively reduces the security risk of sensor-captured attacks and requires minimal memory and computation overhead. Furthermore, our design can be extended to provide hierarchical key management to support data aggregation in WSNs.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhancing agricultural wireless sensor network security through integrated machine learning approaches;SECURITY AND PRIVACY;2024-07-02

2. Integrated Shared Random Key Agreement Protocol for Wireless Sensor Network;The International Arab Journal of Information Technology;2024

3. SecuGrid: Artificial Intelligent Enabled Framework for Securing Power Grid Communication using Honeypot;2023 International Conference on Sustainable Communication Networks and Application (ICSCNA);2023-11-15

4. A comprehensive survey of cryptography key management systems;Journal of Information Security and Applications;2023-11

5. Secure and Energy-Based STEERA Routing Protocol for Wireless Sensor Networks;Journal of Interconnection Networks;2023-09-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3