Performance Evaluation of Conventional and Neural Network-Based Decoder for an Audio of Low-Girth LDPC Code

Author:

Patel Dharmeshkumar1ORCID,Bhatt Ninad2

Affiliation:

1. Electronics & Communication Engineering, Dr. S. & S. S. Ghandhy Government Engineering College, Gujarat Technological University, Ahmedabad, Gujarat, India

2. Electronics & Communication Engineering, Gujarat Technological University, Ahmedabad, Gujarat, India

Abstract

Noise in a communication system degrades the signal level at the receiver, and as a result, the signal is not properly recovered or eliminated at the receiver side. To avoid this, it is necessary to modify the signal before transmission, which is achieved using channel coding. Channel coding provides an opportunity to recover the noisy signal at the receiver side. The low-density parity-check (LDPC) code is an example of a forward error correcting code. It offers near Shannon capacity approaching performance; however, there is a constraint regarding high-girth code design. When the low-girth LDPC code is decoded using conventional methods, an error floor can occur during iterative decoding. To address this issue, a neural network (NN)-based decoder is utilized to overcome the decoding problem associated with low-girth codes. In this work, a neural network-based decoder is developed to decode audio samples of both low- and high-girth LDPC codes. The neural network-based decoder demonstrates superior performance for low-girth codes in terms of bit error rate (BER), peak signal-to-noise-ratio (PSNR), and mean squared error (MSE) with just a single iteration. Audio samples sourced from the NOIZEUS corpus are employed to evaluate the designed neural network. Notably, when compared to a similar decoder, the decoder developed in this study exhibits an improved bit error rate for the same signal-to-noise ratio.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,General Computer Science,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spectral codes of real symmetric operators for error correction;Discrete Mathematics, Algorithms and Applications;2024-07-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3