An IoT Crossdomain Access Decision-Making Method Based on Federated Learning

Author:

Li Chao1ORCID,Li Fan12ORCID,Hao Zhiqiang3,Yin Lihua1ORCID,Sun Zhe1ORCID,Wang Chonghua3ORCID

Affiliation:

1. Cyberspace Institute of Advanced Technology, Guangzhou University, 510700, China

2. Guangxi Key Laboratory of Cryptography and Information Security, 541004, China

3. China Industrial Control Systems Cyber Emergency Response Team, China

Abstract

Crossdomain collaboration allows smart devices work together in different Internet of Things (IoT) domains. Trusted third party-based solutions require to fully understand the access information of the collaboration participants to implement crossdomain access control, which brings privacy risk. In this paper, we propose a federated learning-based crossdomain access decision-making method (FCAD), which builds a crossdomain access decision-making model without sharing privacy information of collaboration participants. Crossdomain access logs are extracted to construct a training dataset. Data enhancement method is used to address the uneven distribution of the dataset. Federated learning and gradient aggregation methods are used to prevent privacy leaks. The experiments on the public dataset show that FCAD obtains a prediction accuracy of 83.6% in the existing crossdomain access system.

Funder

Guangzhou Science and Technology Program key projects

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Reference29 articles.

1. IFTTT helps every thing work better together

2. National-scale clinical information exchange in the United Kingdom: lessons for the United States

3. One simple home system. A world of possibilities. | SmartThings

4. Google Developers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3