Adaptive Transmission Power Control for Reliable Data Forwarding in Sensor Based Networks

Author:

Teng Haojun1,Liu Xiao1,Liu Anfeng1ORCID,Shen Hailan1,Huang Changqin2,Wang Tian3

Affiliation:

1. School of Information Science and Engineering, Central South University, Changsha 410083, China

2. School of Information Technology in Education, South China Normal University, Guangzhou 510631, China

3. School of Computer Science, Huaqiao University, Quanzhou 362000, China

Abstract

In wireless sensor networks (WSNs), many applications require a high reliability for the sensing data forwarding to sink. Due to the lossy nature of wireless channels, achieving reliable communication through multihop forwarding can be very challenging. Broadcast technology is an effective way to improve the communication reliability so that the data can be received by multiple receiver nodes. As long as the data of any one of the receiver nodes is transmitted to the sink, the data can be transmitted successfully. In this paper, a cross-layer optimization protocol named Adaptive transmission Power control based Reliable data Forwarding (APRF) scheme by using broadcast technology is proposed to improve the reliability of network and reduce communication delay. The main contributions of this paper are as follows: (1) for general data aggregation sensor networks, through the theoretical analysis, the energy consumption characteristics of the network are obtained. (2) According to the case that the energy consumption of near-sink area is high and that in far-sink area is low, a cross-layer optimization method is adopted, which can effectively improve the data communication by increasing the transmission power of the remaining energy nodes. (3) Since the reliability of communication is improved by increasing the transmission power of the node, the number of retransmissions of the data packet is reduced, so that the delay of the packet reaching the sink node is reduced. The theoretical and experimental results show that, applying APRF scheme under initial transmission power of 0 dBm, although the lifetime dropped by 13.77%, delay could be reduced by 40.37%, network reliability could be reduced by 10.08%, and volume of data arriving at sink increased by 10.08% compared with retransmission-only mechanism.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3