Preferential Water Infiltration Path in a Slow-Moving Clayey Earthslide Evidenced by Cross-Correlation of Hydrometeorological Time Series (Charlaix Landslide, French Western Alps)

Author:

Bièvre Grégory1ORCID,Joseph Agnès2,Bertrand Catherine3

Affiliation:

1. Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, IFSTTAR, and ISTerre, 38000 Grenoble, France

2. CEREMA, Direction Territoriale Centre-Est, 69000 Bron, France

3. Chrono-Environnement, Université de Franche-Comté, 25000 Besançon, France

Abstract

Slow-moving clayey earthslides frequently exhibit seasonal activity suggesting that deformation processes do not only depend on slope and intrinsic geomechanical parameters. On the contrary, seasonal motion patterns are frequently observed with acceleration during the wet season and deceleration during the dry season. Within landslides, it is mainly the phreatic water table which is monitored. However, in the case of deep-seated landslides made of heterogeneous lithological units and with several slip surfaces, the characterization of the phreatic water table does not allow to relate satisfactorily the activity of the landslide with environmental parameters such as rainfall and subsequent water infiltration at depth. This paper presents a seasonal analysis of water infiltration within a slow-moving clayey landslide. Results of an extensive geotechnical and geophysical prospect are first exposed. Then, rainfall and water table level time series are analysed for two water tables using the cross-correlation technique: the phreatic water table located a few metres deep and a water table located above a shear surface located 12 m deep. Results show that water infiltrates faster down to the deepest water table. Then, time series were split between “dry” and “wet” seasons and the effective rainfall was computed from the original rainfall time series. Cross-correlation results show that the phreatic water table responds identically to rainfall in both seasons. On the contrary, the water table located above the shear surface has a very contrasting behaviour between summer (mainly drainage) and winter (behaviour similar to the phreatic water table with storage of water during a few weeks). This difference in behaviour is in agreement with the landslide kinematics.

Funder

Université Grenoble Alpes

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3