Predicting and Visualizing the Uncertainty Propagations in Traffic Assignments Model Using Monte Carlo Simulation Method

Author:

Seger Mundher1ORCID,Kisgyörgy Lajos1

Affiliation:

1. Highway and Railway Department, Budapest University of Technology and Economics, 1111 Budapest, Hungary

Abstract

Uncertainty can be found at all stages of travel demand model, where the error is passing from one stage to another and propagating over the whole model. Therefore, studying the uncertainty in the last stage is more important because it represents the result of uncertainty in the travel demand model. The objective of this paper is to assist transport modellers in perceiving uncertainty in traffic assignment in the transport network, by building a new methodology to predict the traffic flow and compare predicted values to the real values or values calculated in analytical methods. This methodology was built using Monte Carlo simulation method to quantify uncertainty in traffic flows on a transport network. The values of OD matrix were considered as stochastic variables following a specific probability distribution. And, the results of the simulation process represent the predicted traffic flows in each link on the transport network. Consequently, these predicted results are classified into four cases according to variability and bias. Finally, the results are drawn into figures to visualize the uncertainty in traffic assignments. This methodology was applied to a case study using different scenarios. These scenarios are varying according to inputs parameters used in MC simulation. The simulation results for the scenarios gave different bias for each link separately according to the physical feature of the transport network and original OD matrix, but in general, there is a direct relationship between the input parameter of standard deviation with the bias and variability of the predicted traffic flow for all scenarios.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3