Porcine Fibrin Sealant Promotes Skin Wound Healing in Rats

Author:

Zhang Lihuo1ORCID,Liu Lu2,Zhang Jundong2,Zhou Ping1ORCID

Affiliation:

1. State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China

2. Shanghai Haohai Biotechnology Co.Ltd., Shanghai 201613, China

Abstract

Objective. Fibrin sealant (FS) is widely used for skin wound healing, but data on porcine FS (PFS), a new type of FS, are limited. This study investigated the effects and potential mechanisms of porcine fibrin sealant (PFS) on skin wound healing in rats. Methods. Traumatic rats were randomly divided into three groups: control, PFS, and medical Vaseline. The wound area and wound index of the rats were measured within 14 days after surgery. Hematoxylin-eosin (H&E) staining and Masson staining were used to observe the pathological images and collagen formation on the wounded skin, respectively. To investigate the healing mechanisms, the enzyme-linked immunosorbent assay (ELISA) was used to detect platelet endothelial cell adhesion molecule-1 (CD31) and cluster of differentiation 34 (CD34) expression in the wounded skin. Additionally, quantitative real-time PCR (qRT-PCR) was used to evaluate the mRNA levels of the vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and epidermal growth factor (EGF), and transforming growth factor-β1 (TGF-β1). Meanwhile, TGF-β1 protein expression was assessed by Western blot analysis. Results. Compared with the control group, both PFS and medical Vaseline treatment significantly reduced the wounded area and increased the wound closure rate. H&E staining showed that the cells in the PFS group proliferated rapidly, and the epidermis and dermis were thickened to some extent with a clear epidermal cell structure. Moreover, PFS promoted the formation of collagen and significantly increased the levels of CD31 and CD34 and the growth factors in the skin tissues of the traumatic rats. Conclusion. PFS effectively promoted skin wound healing, especially in tissue formation, reepithelialization, angiogenesis, and collagen deposition, in traumatic rat models. This study provides a new strategy and scientific foundation for PFS application in skin wound healing.

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3