A Novel Parallel Assembly Sequence Planning Method for Complex Products Based on PSOBC

Author:

Yang Yanfang12,Yang Miao1,Shu Liang3ORCID,Li Shasha3,Liu Zhiping12

Affiliation:

1. School of Logistic Engineering, Wuhan University of Technology, Wuhan, China

2. Engineering Research Center of Port Logistics Technology and Equipment, Ministry of Education, Wuhan, China

3. The Low-Voltage Apparatus Technology Research Center of Zhejiang, Wenzhou University, Wenzhou, China

Abstract

Parallel assembly sequence planning (PASP) greatly impacts on efficiency of assembly process. In traditional methods, large scale of matrix calculation still limits efficiency of PASP for complex products. A novel PASP method is proposed to address this issue. To avoid matrix calculation, the synchronized assembly Petri net (SAPN) is firstly established to describe the precedence relationships. Associated with the SAPN model, the PASP process can be implemented via particle swarm optimization based on bacterial chemotaxis (PSOBC). Characterized by an attraction-repulsion phase, PSOBC not only prevents premature convergence to a high degree, but also keeps a more rapid convergence rate than standard particle swarm optimization (PSO) algorithm. Finally, feasibility and effectiveness of the proposed method are verified via a case study. With different assembly parallelism degrees, optimization results show that assembly efficiency of the solution calculated by PSOBC method is 9.0%, 4.2%, and 3.1% better than the standard PSO process.

Funder

Zhejiang Key Research and Development Program

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3