Detection of Touchscreen-Based Urdu Braille Characters Using Machine Learning Techniques

Author:

Shokat Sana1,Riaz Rabia1ORCID,Rizvi Sanam Shahla2ORCID,Khan Inayat3ORCID,Paul Anand4ORCID

Affiliation:

1. Department of Computer Science and IT, University of Azad Jammu and Kashmir, Muzaffarabad, CO 13100, Pakistan

2. Raptor Interactive (Pty) Ltd., Eco Boulevard, Witch Hazel Ave, Centurion 0157, South Africa

3. Department of Computer Science, University of Buner, Buner 19290, Pakistan

4. The School of Computer Science and Engineering, Kyungpook National University, Daegu, Republic of Korea

Abstract

Revolution in technology is changing the way visually impaired people read and write Braille easily. Learning Braille in its native language can be more convenient for its users. This study proposes an improved backend processing algorithm for an earlier developed touchscreen-based Braille text entry application. This application is used to collect Urdu Braille data, which is then converted to Urdu text. Braille to text conversion has been done on Hindi, Arabic, Bangla, Chinese, English, and other languages. For this study, Urdu Braille Grade 1 data were collected with multiclass (39 characters of Urdu represented by class 1, Alif (ﺍ), to class 39, Bri Yay (ے). Total (N = 144) cases for each class were collected. The dataset was collected from visually impaired students from The National Special Education School. Visually impaired users entered the Urdu Braille alphabets using touchscreen devices. The final dataset contained (N = 5638) cases. Reconstruction Independent Component Analysis (RICA)-based feature extraction model is created for Braille to Urdu text classification. The multiclass was categorized into three groups (13 each), i.e., category-1 (1–13), Alif-Zaal (ﺫ - ﺍ), category-2 (14–26), Ray-Fay (ﻒ - ﺮ), and category-3 (27–39), Kaaf-Bri Yay (ے - ﻕ), to give better vision and understanding. The performance was evaluated in terms of true positive rate, true negative rate, positive predictive value, negative predictive value, false positive rate, total accuracy, and area under the receiver operating curve. Among all the classifiers, support vector machine has achieved the highest performance with a 99.73% accuracy. For comparisons, robust machine learning techniques, such as support vector machine, decision tree, and K-nearest neighbors were used. Currently, this work has been done on only Grade 1 Urdu Braille. In the future, we plan to enhance this work using Grade 2 Urdu Braille with text and speech feedback on touchscreen-based android phones.

Funder

National Research Foundation of Korea

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3