Design of a Real-Time Monitoring System for Smoke and Dust in Thermal Power Plants Based on Improved Genetic Algorithm

Author:

Wang Bo12ORCID,Yao Xuliang1ORCID,Jiang Yongqing2ORCID,Sun Chao2ORCID,Shabaz Mohammad34ORCID

Affiliation:

1. College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150000, China

2. School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150000, China

3. Arba Minch University, Arba Minch, Ethiopia

4. School of Computer Science Engineering, Lovely Professional University, Phagwara, India

Abstract

The major health hazards from smoke and dust are due to microscopic fine particles present in smoke as well as in dust. These fine particles, which are microscopic in nature, can penetrate into human lungs and give rise to a range of health problems such as irritation in eyes, a runny nose, throat infection, and chronic cardiac and lung diseases. There is a need to device such mechanisms that can monitor smoke in thermal power plants for timely control of smoke that can pollute air and affects adversely the people living nearby the plants. In order to solve the problems of low accuracy of monitoring results and long monitoring time in conventional methods, a real-time smoke and dust monitoring system in thermal power plants is proposed, which makes use of modified genetic algorithm (GA). The collection and calibration of various monitoring parameters are accomplished through sampling control. The smoke and dust emission real-time monitoring subsystems are employed for the monitoring in an accurate manner. A dual-channel TCP/IP protocol is used between remote and local controlling modules for secure and speedy communication of the system. The generic GA is improved on the basis of the problem statement, and the linear programming model is used to avoid the defect of code duplication with genetic operations. The experimental results show that the proposed smoke and dust monitoring system can effectively improve the accuracy of the monitoring results and also reduce the time complexity by providing solutions in a faster manner. The significance of the proposed technique is to provide a reliable basis for the smoke and dust emission control of thermal power plants for safeguarding the human health.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3