An Indoor Positioning and Prewarning System Based on Wireless Sensor Network Routing Algorithm

Author:

Gao Yanghua1ORCID,Lou Weidong1ORCID,Lu Hailiang1ORCID

Affiliation:

1. Information Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou 310008, China

Abstract

One of the most important means to position abnormal devices is to efficiently utilize the resources of wireless sensor network (WSN) and make proper analysis of the relevant data. Therefore, this paper constructs an indoor positioning and prewarning system that utilizes energy efficiently and achieves a long lifecycle. Firstly, the adjacent round iteration load balancing (ARILB) routing algorithm was proposed, which elects the cluster heads (CHs) by the adjacent round strategy. In this way, the random components were eliminated in CH election. Next, a short-distance multifrequency routing strategy was constructed between CHs to transmit the information to the sink, and a positioning algorithm was designed called ARILB-received signal strength (RSS). The ARILB-RSS positioning algorithm traverses the triangles formed by anchor nodes, forming multiple sets of ranging points; then, the optimal anchor node is recorded, and the path loss factor is iterated to reduce the positioning error. Simulation shows that the network survives 54.5% longer using ARILB than using the distributed energy-efficient clustering (DEEC) algorithm; the packet delivery rate using ARILB was about 139% higher than that of low energy adaptive clustering hierarchy (LEACH) algorithm and 35% higher than that of uneven clustering routing algorithm based on chain-cluster type (URCC) algorithm; ARILB-RSS reduced the ranging error by 14.31% and then the positioning error by 26.79%.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3