Novel Adaptive Sliding Mode Control with Nonlinear Disturbance Observer for SMT Assembly Machine

Author:

Qian Rongrong12,Luo Minzhou2,Zhao Yao3,Zhao Jianghai2

Affiliation:

1. School of Information Science and Technology, University of Science and Technology of China, Hefei 230036, China

2. Institute of Advanced Manufacturing Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Changzhou 213164, China

3. School of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China

Abstract

This paper presents a novel adaptive sliding mode control based on nonlinear sliding surface with disturbance observer (ANSMC-DOB) for precision trajectory tracking control of a surface mount technology (SMT) assembly machine. A two-degree-of-freedom model with time-varying parameter uncertainties and disturbances is built to describe the first axial mode of the pick-place actuation axis of the machine. According to the principle of variable damping ratio coefficient which makes the system have a nonovershoot transient response and a short settling time in the second-order system, the nonlinear sliding surface is designed for the sliding mode control (SMC). Since the upper bound value of the disturbances is unknown, the adaptive gain estimation is applied to replace the switching gain in the SMC. In order to settle the problem of SMC unrobust to the mismatched parameter uncertainties and disturbances, the nonlinear disturbance observer is introduced to estimate the mismatched disturbances and form the novel controller of ANSMC-DOB. The stability of sliding surfaces and control laws are verified by the Lyapunov functions. The simulation research and comparative experiments are conducted to verify the improvement of positioning accuracy and robustness by the proposed ANSMC-DOB in the SMT assembly machine.

Funder

National Science-Technology Support Plan Projects of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3