Accuracy-Improved Fault Diagnosis Method for Rolling Bearing Based on Enhanced ESGMD-CC and BA-ELM Model

Author:

Yuan Wei12ORCID,Liu Fuzheng3ORCID,Gu Hongbin1,Miao Fei2ORCID,Zhang Faye3ORCID,Jiang Mingshun3ORCID

Affiliation:

1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

2. Flying College, Shandong University of Aeronautics, Binzhou 256603, China

3. School of Control Science and Engineering, Shandong University, Jinan 250061, China

Abstract

The current methods for early fault diagnosis of rolling bearing have some flaws, such as poor fault feature information and insufficient fault feature extraction capability, which makes it challenging to guarantee fault diagnosis accuracy. In order to increase the accuracy of fault diagnosis, it proposes a new fault diagnosis method based on enhanced Symplectic geometry mode decomposition with cosine difference factor and calculus operator (ESGMD-CC) and bat algorithm (BA) optimized extreme learning machine (ELM). The vibration signal is first decomposed into a number of Symplectic geometry components (SGCs) by SGMD. The number of iterations is reduced by the cosine difference factor, which also successfully separates the noise components from the effective components. The calculus operator is adopted to strengthen the weak fault features, making it simple to extract. The fault feature vectors are calculated by the power spectrum entropy-weighted singular values. Finally, the ELM model optimized by BA iteratively is performed as the final classifier for fault classification. The simulation and experiments demonstrate that the proposed method has a better degree of fault diagnostic accuracy and is effective at extracting the rich fault information from vibration signals.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3