A Method for Estimating the Surface Roughness of Rock Discontinuities

Author:

Cai Yi1ORCID,Tang Hui-ming12ORCID,Wang Ding-jian1ORCID,Wen Tao1ORCID

Affiliation:

1. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China

2. Three Gorges Research Center for Geo-Hazard, Ministry of Education, Wuhan 430074, China

Abstract

The primary objective of this study is to develop a parameter with a clear physical meaning to estimate the surface roughness of rock discontinuities. This parameter must be closely related to the shear strength of rock discontinuities. The first part of this study focuses on defining and computing this parameter. The estimation formula for the shear strength of a triangle within a discontinuity surface is derived based on Patton’s model. The parameter, namely, the index of roughness (IR), is then proposed to quantitatively estimate discontinuity roughness. Based on laser scanning techniques, digital models of discontinuities and discontinuity profiles are constructed, and then their corresponding IR values are computed. In the second part of this study, the computational processes and estimated effects of the two-dimensional (2D) and three-dimensional (3D) IR values of the discontinuities are illustrated through several applications. Results show that the 2D and 3D IR values of these discontinuities indicate anisotropy and sampling interval effects. In addition, a strong linear correlation is detected between IR and the joint roughness coefficient (JRC) for seventy-four profiles and eleven discontinuity specimens, respectively. Finally, the proposed method, back analysis method, root mean square (Z2) method, and Grasselli’s method are compared to study the use of the parameter IR.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3