Electrode Composite LiFePO4@Carbon: Structure and Electrochemical Performances

Author:

Huynh Le Thanh Nguyen1ORCID,Nguyen Hoang Hai Au1,Tran Thi Thuy Dung1,Nguyen Thi Thu Trang2,Nguyen Thi My Anh3,La Thi Hang45,Tran Van Man16,Le My Loan Phung16ORCID

Affiliation:

1. Applied Physical Chemistry Laboratory (APCLAB), VNUHCM-University of Science, Vietnam

2. Faculty of Chemistry, HCMC University of Education, Vietnam

3. Faculty of Material Technology, VNUHCM-University of Technology, Vietnam

4. Graduate University of Science & Technology – VAST, Vietnam

5. Vinh Long University of Technology Education (VLUTE), Vietnam

6. Department of Physical Chemistry, Faculty of Chemistry, VNUHCM-University of Science, Vietnam

Abstract

This work aimed at preparing the electrode composite LiFePO4@carbon by hydrothermal and the calcination process was conducted at 600, 700, and 800°C. The structure and morphology were determined by X-ray diffraction (XRD), SEM, Raman spectroscopy, X-ray photon spectroscopy (XPS), and thermal analysis. The XRD refinement’s results point out the orthorhombic structure without impurity phase and the high crystalline of synthesized olivines. The results of Raman spectroscopy and XPS confirmed the pure olivine phase as well as the successful carbon coating on the surface of olivines’ powders. Moreover, the calcinated temperature affected the morphology as well as the electrochemical performance of synthesized olivines. The electrochemical measurements were conducted by cyclic voltammetry and galvanostatic cycling test. The diffusion coefficients were calculated from cyclic voltammetry curves and reached 1.09 × 10−12 cm2/s for LFP600, 2.28 × 10−11 cm2/s for LFP700, and 3.27 × 10−12 cm2/s LFP800. The cycling test at rate C/10 exhibited an excellent cyclability with discharge capacity of 145 mAh/g for LFP600, 170 mAh/g for LFP700, and 160 mAh/g for LFP800.

Funder

Viet Nam National University Ho Chi Minh City

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3