Hilbert–Schmidt Independence Criterion Regularization Kernel Framework on Symmetric Positive Definite Manifolds

Author:

Liu Xi1ORCID,Zhan Zengrong1ORCID,Niu Guo2ORCID

Affiliation:

1. School of Information Engineering, Guangzhou Panyu Polytechnic, Guangzhou 510483, China

2. School of Electronics and Information Technology, Foshan University, Foshan 510275, China

Abstract

Image recognition tasks involve an increasingly high amount of symmetric positive definite (SPD) matrices data. SPD manifolds exhibit nonlinear geometry, and Euclidean machine learning methods cannot be directly applied to SPD manifolds. The kernel trick of SPD manifolds is based on the concept of projecting data onto a reproducing kernel Hilbert space. Unfortunately, existing kernel methods do not consider the connection of SPD matrices and linear projections. Thus, a framework that uses the correlation between SPD matrices and projections to model the kernel map is proposed herein. To realize this, this paper formulates a Hilbert–Schmidt independence criterion (HSIC) regularization framework based on the kernel trick, where HSIC is usually used to express the interconnectedness of two datasets. The proposed framework allows us to extend the existing kernel methods to new HSIC regularization kernel methods. Additionally, this paper proposes an algorithm called HSIC regularized graph discriminant analysis (HRGDA) for SPD manifolds based on the HSIC regularization framework. The proposed HSIC regularization framework and HRGDA are highly accurate and valid based on experimental results on several classification tasks.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3