Affiliation:
1. Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
2. Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Poonamallee High Road, Chennai 600 077, Tamil Nadu, India
Abstract
Quinoline heterocycle is a useful scaffold to develop bioactive molecules used as anticancer, antimalaria, and antimicrobials. Inspired by their numerous biological activities, an attempt was made to synthesize a series of novel 7-chloroquinoline derivatives, including 2,7-dichloroquinoline-3-carbonitrile (5), 2,7-dichloroquinoline-3-carboxamide (6), 7-chloro-2-methoxyquinoline-3-carbaldehyde (7), 7-chloro-2-ethoxyquinoline-3-carbaldehyde (8), and 2-chloroquinoline-3-carbonitrile (12) by the application of Vilsmeier–Haack reaction and aromatic nucleophilic substitution of 2,7-dichloroquinoline-3-carbaldehyde. The carbaldehyde functional group was transformed into nitriles using POCl3 and NaN3, which was subsequently converted to amide using CH3CO2H and H2SO4. The compounds synthesized were screened for their antibacterial activity against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Streptococcus pyogenes. Compounds 6 and 8 showed good activity against E. coli with an inhibition zone of 11.00 ± 0.04 and 12.00 ± 0.00 mm, respectively. Compound 5 had good activity against S. aureus and P. aeruginosa with an inhibition zone of 11.00 ± 0.03 mm relative to standard amoxicillin (18 ± 0.00 mm). Compound 7 displayed good activity against S. pyogenes with an inhibition zone of 11.00 ± 0.02 mm. The radical scavenging activity of these compounds was evaluated using 1,1-diphenyl-2-picrylhydrazyl (DPPH), and compounds 5 and 6 displayed the strongest antioxidant activity with IC50 of 2.17 and 0.31 µg/mL relative to ascorbic acid (2.41 µg/mL), respectively. The molecular docking study of the synthesized compounds was conducted to investigate their binding pattern with topoisomerase IIβ and E. coli DNA gyrase B. Compounds 6 (−6.4 kcal/mol) and 8 (−6.6 kcal/mol) exhibited better binding affinity in their in silico molecular docking against E. coli DNA gyrase. The synthesized compounds were also found to have minimum binding energy ranging from −6.9 to −7.3 kcal/mol against topoisomerase IIβ. The SwissADME predicted results showed that the synthesized compounds 5–8 and 12 satisfy Lipinski’s rule of five with zero violations. The ProTox-II predicted organ toxicity results revealed that all the synthesized compounds were inactive in hepatotoxicity, immunotoxicity, mutagenicity, and cytotoxicity. The findings of the in vitro antibacterial and molecular docking analysis suggested that compound 8 might be considered a hit compound for further analysis as antibacterial and anticancer drug. The radical scavenging activity displayed by compounds 5 and 6 suggests these compounds as a radical scavenger.
Funder
Adama Science and Technology University
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Exploration of thiosemicarbazone-quinolone hybrids over in-silico, antioxidant, and zebrafish embryo toxicity studies;Journal of Molecular Structure;2025-01
2. Synthesis, anti-microbial evaluation, and
in silico
studies of novel quinoline-isoxazole hybrids;Synthetic Communications;2024-08-29
3. Intramolecular Heterocyclization of Quinolyl-Substituted Carbothioamides to Functionalized 2,4-Dihydro-3H-1,2,4-triazoles and -1,3,4-thiadiazoles;Russian Journal of Organic Chemistry;2024-06
4. Exploring the antimicrobial and cytotoxic potential of novel chloroquine analogues;Future Medicinal Chemistry;2024-03-08
5. In-silico, Synthesis, Characterization, and In-vitro
Studies on Benzylidene-based 2-chloroquinolin Derivatives as Free Radical
Scavengers in Parkinson’s Disease;Drug Research;2024-02