Inhibition of TNF-α and JNK Signaling Pathway Can Reduce Paclitaxel-Induced Apoptosis of Mouse Cardiomyocytes

Author:

Ren Shuang1,Huang Tianwen2,Ou Danyan1,Feng Luhuai1,Huang Sisi1,Zhou Chaonan1,Ge Lianying3ORCID

Affiliation:

1. Department of General Internal Medicine, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi, China

2. Department of Clinical Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi, China

3. Ultrasonic Department, Guangxi Medical University Cancer Hospital, Nanning, 530021 Guangxi, China

Abstract

Paclitaxel (PTX) is a widely used chemotherapeutic drug for treating tumors. However, studies have shown that it can cause cardiac problems such as arrhythmia, myocarditis, chronic cardiomyopathy, and heart failure. Therefore, it is essential to study the mechanism behind the cardiotoxicity of PTX in tumor treatment. In this study, we initially injected PTX into mice to establish a myocardial cell apoptosis model to observe the degree of damage to mouse myocardium caused by PTX. Upon determining the levels of mouse myocardial creatine phosphokinase (CK), myokinase isoenzyme (CK-MB), aspartate transaminase (AST), and lactate dehydrogenase (LDH), we found that all of these levels showed apparent increases in mice treated with PTX. Further analyses of the TNF-α level and the expression of Jun N-terminal kinase (JNK) and Bcl-2 family-related proteins in myocardial tissue were performed. It was found that PTX increased the protein levels of TNF-α, Bax, p-JNK, and JNK in myocardial tissue but decreased the protein level of Bcl-2. After 1 month of PTX treatment in mice, we inhibited the expression of TNF-α and JNK proteins, which reduced the effect of paclitaxel on the apoptosis of mouse cardiomyocytes. The protein levels of Bax, p-JNK, and TNF-α in cardiomyocytes were reduced, while there was a relative increase in the Bcl-2 protein level. The findings suggested that inhibition of the NK signaling pathway and TNF-α can lessen the effect of PTX on mouse cardiomyocytes.

Publisher

Hindawi Limited

Subject

Biomedical Engineering,Bioengineering,Medicine (miscellaneous),Biotechnology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3