Microvesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells Enhance Alveolar Type II Cell Proliferation and Attenuate Lung Inflammation in a Rat Model of Bronchopulmonary Dysplasia

Author:

Zhou Ou1ORCID,You Jingyi1ORCID,Xu Xiaochuan1ORCID,Liu Jiang1ORCID,Qiu Huijun1ORCID,Hao Chang1ORCID,Zou Wenjing1ORCID,Wu Wenjie2ORCID,Fu Zhou1ORCID,Tian Daiyin1ORCID,Zou Lin134ORCID

Affiliation:

1. Department of Respiratory Medicine, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing 400014, China

2. Department of Pediatrics, Chongqing Youyoubaobei Women and Children’s Hospital, Chongqing 401122, China

3. Center of Clinical Molecular Medicine, Children’s Hospital of Chongqing Medical University, Chongqing 400014, China

4. Clinical Research Unit, Children’s Hospital of Shanghai Jiaotong University, Shanghai 200062, China

Abstract

Although it is known that exosomes derived from human umbilical cord mesenchymal stem cells (hUCMSCs) alleviate hyperoxic lung injury of bronchopulmonary dysplasia (BPD) in animal models, the role of microvesicles (MVs) derived from hUCMSCs in BPD is poorly defined. Furthermore, antenatal inflammation has been linked to high risk of BPD in preterm infants. The purpose of this study was to explore whether MVs derived from hUCMSCs can preserve lung structure and function in an antenatal lipopolysaccharide- (LPS-) induced BPD rat model and to clarify the underlying mechanism. We demonstrate that antenatal LPS induced alveolar simplification, altered lung function, and dysregulated pulmonary vasculature, which restored by hUCMSCs and MVs treatment. Furthermore, MVs were large vesicles with a diameter of 100-900 nanometers and mostly uptaken by alveolar epithelial type II cells (AT2) and macrophages. Compared with the LPS-exposed group, MVs restored the AT2 cell number and SP-C expression in vivo and promoted the proliferation of AT2 cells in vitro. MVs also restored the level of IL-6 and IL-10 in lung homogenate. Additionally, PTEN/AKT and MAPK pathways were associated with the protection of MVs. Taken together, this study suggests MVs derived from hUCMSCs improve lung architecture and function in an antenatal LPS-induced BPD rat model by promoting AT2 cell proliferation and attenuating lung inflammation; thus, MVs provide a promising therapeutic vehicle for BPD treatment.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

Hindawi Limited

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3