Reconfigurable Intelligent Surface-Aided Cell-Free Massive MIMO with Low-Resolution ADCs: Secrecy Performance Analysis and Optimization

Author:

Zhang Xianyu1ORCID,Qiao Xiaoqiang1ORCID,An Kang1,Deng Junquan1,Liang Tao1,Wang Xiaoyu2

Affiliation:

1. Sixty-Third/63rd Research Institute, National University of Defense Technology, Nanjing 210007, China

2. College of Communication Engineering, Army Engineering University of PLA, Nanjing 210007, China

Abstract

The secure communication in reconfigurable intelligent surface-aided cell-free massive MIMO system is investigated with low-resolution ADCs and with the existence of an active eavesdropper. Specifically, an aggregated channel estimation approach is applied to decrease the overhead required to estimate the channels. Using the available imperfect channel state information (CSI), the conjugate beamforming and random beamforming are applied at the APs and the RIS for downlink data transmission, respectively. The closed-form expression of the achievable secrecy rate is acquired to appraise the achievable secrecy performance using only the channel statistics. With the achievable analytical results, the impacts of the quantization bit of ADCs, channel estimation error, the number of RIS elements, and the number of the APs can be unveiled. Aiming to maximize the minimum achievable rate of all legitimate users subject to security constraints, the power control optimization scheme is first formulated. To tackle this nonconvex property of the proposed optimization problem, a path-following algorithm is then utilized to solve the initial problem with continuous approximations and iterative optimization. Numerical results are presented to verify the achieved results along with availability of the presented power allocation approach.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3