Nonuniform Clustering of Wireless Sensor Network Node Positioning Anomaly Detection and Calibration

Author:

Lu Biao1,Liu Wansu1ORCID

Affiliation:

1. Information Engineering Department, Suzhou University, Suzhou 234000, China

Abstract

In order to detect and correct node localization anomalies in wireless sensor networks, a hierarchical nonuniform clustering algorithm is proposed. This paper designs a centroid iterative maximum likelihood estimation location algorithm based on nonuniformity analysis, selects the nonuniformity analysis algorithm, gives the flowchart of node location algorithm, and simulates the distribution of nodes with MATLAB. Firstly, the algorithm divides the nodes in the network into different network levels according to the number of hops required to reach the sink node. According to the average residual energy of nodes in each layer, the sink node selects the nodes with higher residual energy in each layer of the network as candidate cluster heads and selects a certain number of nodes with lower residual energy as additional candidate cluster heads. Then, at each level, the candidate cluster heads are elected to produce the final cluster heads. Finally, by controlling the communication range between cluster head and cluster members, clusters of different sizes are formed, and clusters at the level closer to the sink node have a smaller scale. By simulating the improved centroid iterative algorithm, the values of the optimal iteration parameters α and η are obtained. Based on the analysis of the positioning errors of the improved centroid iterative algorithm and the maximum likelihood estimation algorithm, the value of the algorithm conversion factor is selected. Aiming at the problem of abnormal nodes that may occur in the process of ranging, a hybrid node location algorithm is further proposed. The algorithm uses the 2 , 1 norm to smooth the structured anomalies in the ranging information and realizes accurate positioning while detecting node anomalies. Experimental results show that the algorithm can accurately determine the uniformity of distribution, achieve good positioning effect in complex environment, and detect abnormal nodes well. In this paper, the hybrid node location algorithm is extended to the node location problem in large-scale scenes, and a good location effect is achieved.

Funder

Teaching Research Project

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3