Coupling Shape Optimization and Topological Derivative for Maxwell Equations

Author:

Alassane SY1ORCID

Affiliation:

1. Laboratoire d’Informatique, de Mathématiques et Applications (LIMA), U.F.R-SATIC, Université Alioune Diop, BP 30, Bambey, Senegal

Abstract

The paper deals with a coupling algorithm using shape and topological derivatives of a given cost functional and a problem governed by nonstationary Maxwell’s equations in 3D. To establish the shape and topological derivatives, an adjoint method is used. For the topological asymptotic expansion, two examples of cost functionals are considered with the perturbation of the electric permittivity and magnetic permeability. We combine the shape derivative and topological one to propose an algorithm. The proposed algorithm allows to insert a small inhomogeneity (electric or magnetic) in a given shape.

Publisher

Hindawi Limited

Subject

Applied Mathematics,Analysis

Reference11 articles.

1. Variation et optimisation de formes

2. Shape derivative in the wave equation with Dirichlet boundary condidtion;J. Cagnol;Journal of Differential Equations,1990

3. Structural optimization using sensitivity analysis and a level-set method

4. Fictitious domain approach and level-sets method for Stokes problem;A. Sy;Internationl Journal of Mathematical Archive,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3