Detecting MRI-Invisible Prostate Cancers Using a Weakly Supervised Deep Learning Model

Author:

Zheng Yao1ORCID,Zhang Jingliang2ORCID,Huang Dong1ORCID,Hao Xiaoshuo1ORCID,Qin Weijun2ORCID,Liu Yang1ORCID

Affiliation:

1. School of Biomedical Engineering, Air Force Medical University, No. 169 Changle West Road, Xi’an, Shaanxi, China

2. Department of Urology, Xijing Hospital, Air Force Medical University, No. 127 Changle West Road, Xi’an, Shaanxi Province, China

Abstract

Background. MRI is an important tool for accurate detection and targeted biopsy of prostate lesions. However, the imaging appearances of some prostate cancers are similar to those of the surrounding normal tissue on MRI, which are referred to as MRI-invisible prostate cancers (MIPCas). The detection of MIPCas remains challenging and requires extensive systematic biopsy for identification. In this study, we developed a weakly supervised UNet (WSUNet) to detect MIPCas. Methods. The study included 777 patients (training set: 600; testing set: 177), all of them underwent comprehensive prostate biopsies using an MRI-ultrasound fusion system. MIPCas were identified in MRI based on the Gleason grade (≥7) from known systematic biopsy results. Results. The WSUNet model underwent validation through systematic biopsy in the testing set with an AUC of 0.764 (95% CI: 0.728-0.798). Furthermore, WSUNet exhibited a statistically significant precision improvement of 91.3% (p<0.01) over conventional systematic biopsy methods in the testing set. This improvement resulted in a substantial 47.6% (p<0.01) decrease in unnecessary biopsy needles, while maintaining the same number of positively identified cores as in the original systematic biopsy. Conclusions. In conclusion, the proposed WSUNet could effectively detect MIPCas, thereby reducing unnecessary biopsies.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

Hindawi Limited

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3