Robust Suspicious Action Recognition Approach Using Pose Descriptor

Author:

Ahmed Waqas1,Yousaf Muhammad Haroon23ORCID,Yasin Amanullah3

Affiliation:

1. Department of Telecommunication Engineering, University of Engineering and Technology, Taxila, Pakistan

2. Department of Computer Engineering, University of Engineering and Technology, Taxila, Pakistan

3. Swarm Robotic Lab-National Centre for Robotics and Automation (NCRA), University of Engineering and Technology, Taxila, Pakistan

Abstract

In the current era of technological development, human actions can be recorded in public places like airports, shopping malls, and educational institutes, etc., to monitor suspicious activities like terrorism, fighting, theft, and vandalism. Surveillance videos contain adequate visual and motion information for events that occur within a camera’s view. Our study focuses on the concept that actions are a sequence of moving body parts. In this paper, a new descriptor is proposed that formulates human poses and tracks the relative motion of human body parts along with the video frames, and extracts the position and orientation of body parts. We used Part Affinity Fields (PAFs) to acquire the associated body parts of the people present in the frame. The architecture jointly learns the body parts and their associations with other body parts in a sequential process, such that a pose can be formulated step by step. We can obtain the complete pose with a limited number of points as it moves along the video and we can conclude with a defined action. Later, these feature points are classified with a Support Vector Machine (SVM). The proposed work was evaluated on the benchmark datasets, namely, UT-interaction, UCF11, CASIA, and HCA datasets. Our proposed scheme was evaluated on the aforementioned datasets, which contained criminal/suspicious actions, such as kick, punch, push, gun shooting, and sword-fighting, and achieved an accuracy of 96.4% on UT-interaction, 99% on UCF11, 98% on CASIA and 88.72% on HCA.

Funder

Higher Education Commission, Pakistan

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identification of Human Activity by Utilizing YOLOv5s Approaches;2024 IEEE 3rd International Conference on Computing and Machine Intelligence (ICMI);2024-04-13

2. Temporal Relations of Informative Frames in Action Recognition;2024 13th Iranian/3rd International Machine Vision and Image Processing Conference (MVIP);2024-03-06

3. A Deep Autoencoder-Based Approach for Suspicious Action Recognition in Surveillance Videos;Arabian Journal for Science and Engineering;2023-07-08

4. Lightweight CNN and GRU Network for Real-Time Action Recognition;2022 12th International Conference on Pattern Recognition Systems (ICPRS);2022-06-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3