Affiliation:
1. Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
2. Department of Histology and Embryology, Laboratory of Stem Cell and Tissue Engineering, Chongqing Medical University, Chongqing 400010, China
Abstract
Ginsenoside Rg1 (Rg1) is purified from ginseng with various pharmacological effects, which might facilitate the biological behavior of human amnion-derived mesenchymal stem/stromal cells (hAD-MSCs). This study is aimed at investigating the effects of Rg1 on the biological behavior, such as viability, proliferation, apoptosis, senescence, migration, and paracrine, of hAD-MSCs. hAD-MSCs were isolated from human amnions. The effects of Rg1 on the viability, proliferation, apoptosis, senescence, migration, and paracrine of hAD-MSCs were detected by CCK-8, EdU, flow cytometry, SA-β-Gal staining, wound healing, and ELISA assays, respectively. The protein expression levels were detected by western blot. Cell cycle distribution was evaluated using flow cytometry. We found that Rg1 promoted hAD-MSC cycle progression from G0/G1 to S and G2/M phases and significantly increased hAD-MSC proliferation rate. Rg1 activated PI3K/AKT signaling pathway and significantly upregulated the expressions of cyclin D, cyclin E, CDK4, and CDK2 in hAD-MSCs. Inhibition of PI3K/AKT signaling significantly downregulated the expressions of cyclin D, cyclin E, CDK4, and CDK2, prevented cell cycle progression, and reduced hAD-MSC proliferation induced by Rg1. hAD-MSC senescence rate was significantly increased by D-galactose, while the elevated hAD-MSC senescence rate induced by D-galactose was significantly decreased by Rg1 treatment. D-galactose significantly induced the expressions of senescence markers, p16INK4a, p14ARF, p21CIP1, and p53 in hAD-MSCs, while Rg1 significantly reduced the expressions of those markers induced by D-galactose in hAD-MSCs. Rg1 significantly promoted the secretion of IGF-I in hAD-MSCs. Rg1 reduced the hAD-MSC apoptosis rate. However, the difference was not significant. Rg1 had no influence on hAD-MSC migration. Altogether, our results demonstrate that Rg1 can promote the viability, proliferation, and paracrine and relieve the senescence of hAD-MSCs. PI3K/AKT signaling pathway is involved in the promotive effect of Rg1 on hAD-MSC proliferation. The protective effect of Rg1 on hAD-MSC senescence may be achieved via the downregulation of p16INK4A and p53/p21CIP1 pathway.
Funder
National Natural Science Foundation of China
Subject
Cell Biology,Molecular Biology