Bridge Frequency Scanning Using the Contact-Point Response of an Instrumented 3D Vehicle: Theory and Numerical Simulation

Author:

Li Zhenkun1ORCID,Lin Weiwei1ORCID,Zhang Youqi1ORCID

Affiliation:

1. Department of Civil Engineering, Aalto University, Rakentajanaukio 4 A, Espoo 02150, Finland

Abstract

Scanning the bridge’s frequencies from the passing vehicle’s vibration data has been frequently investigated recently. However, in previous studies, vehicles were typically simplified to quarter- or half-car models, and apparent disparity could be observed between the models and real vehicles. To make the vehicle model more practical, in this study, a 3D vehicle model is built to extract the bridge’s frequencies from vehicle vibrations. For the first time, equations for calculating the contact-point (CP) response of the 3D vehicle model are derived with tire damping. Furthermore, residual CP responses between front and rear wheels are utilized to eliminate the inverse effects of road roughness, making the bridge frequencies outstanding in the frequency domain. The robustness of the proposed method is tested under different influence factors, and two possible measurement errors are as follows: the sensor position and axle distance when applying the proposed method in engineering. Results show that the proposed method performs stably under the influence of different road roughness classes and tire damping. Bridge frequencies can be identified when the vehicle is travelling at a highway speed (108 km/h in this study). Environmental noises can submerge the bridge’s high-order frequencies but have little influence on the low-frequency range. High bridge damping will restrain the transmission of bridge vibration to the vehicle, making high-order bridge frequencies less visible. In addition, the errors introduced by a vehicle body sensor position can be eliminated when calculating the CP responses for tires, thus will not influence bridge frequency identification. To avoid possible errors induced by manual measurement of the axle distance, a novel cross-correlation function-based method is employed, which is verified effective and practical for calculating residual CP responses.

Funder

Jane ja Aatos Erkon Säätiö

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3