Design of Intelligent Speech Translation System Based on Deep Learning

Author:

Tan Ying1ORCID

Affiliation:

1. Jiangsu Maritime Institute School of International Education, Nanjing, Jiangsu 211170, China

Abstract

In order to solve the problem of low translation accuracy caused by complex sentence parameters in traditional machine translation systems, a method based on deep learning was proposed. First, MCU SPCE061A is used to study the problem of complex digital signal. The training data in the synchronous translation server support the translation services of a large number of users, and the translation results were displayed through the session interface of the user terminal. The PMDL model is used to detect the keyword signal, record the PCM audio data, and slice the collected pulse code modulation signal, so as to wake up the artificial intelligence voice service. Then, this study establishes a speech recognition process that accurately outputs the speech-related semantics. In this paper, a manual interactive synchronous translation program is designed with the input text as the search criterion, and the set is trimmed to obtain the best translation effect. The experimental results show that the sentence translation accuracy of the system is 0.9 ∼ 1.0. It is proved that the method based on deep learning solves the problem of low accuracy of the traditional translation system.

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning and Deep Learning;Multimodal Biometric and Machine Learning Technologies;2023-10-16

2. Retracted: Design of Intelligent Speech Translation System Based on Deep Learning;Mobile Information Systems;2023-08-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3