The Research on the Influence of Degassing Temperatures of Water Samples on Radon Observations

Author:

Shuqi Cheng1,Xibao Wang1ORCID,Haigang Liu1,Shuaihe Wang1,Lei Xu2

Affiliation:

1. Linyi Earthquake Monitoring Center Station of Shandong Earthquake Agency, Linyi 276000, Shandong Province, China

2. Liaocheng Earthquake Monitoring Center Station of Shandong Earthquake Agency, Liaocheng 252000, Shandong Province, China

Abstract

Radon is a naturally emitted gas that is observed in soils, subsoils, air, and all types of water. Because there is a statistically significant association observed between seismic activity and active concentration levels of radon readings, a dissolved form of radon in water near-fault locations such as wells or springs, has significant observational value. Furthermore, as the temperature of the water rises, the dissolved radon in the water might transfer to the air, a process known as degassing. Thus, radon measurements in all types of water such as groundwater, tap waters, and bottled drinking waters have been investigated by covering several aspects of the degassing process, namely, health issues, monitoring volcanic activities, and predicting seismic activities by employing various methods. In this paper, radon measurements of sampled waters removed from the well located at Yishui Seismic Station in China are utilized to monitor the degassing temperature and predict earthquakes. For this purpose, an experiment is devised to collect water samples manually. Then, the amount of radon dissolved in the water samples is examined to find a stable degassing temperature range at Yishui Seismic Station. An experimental setup is constructed to collect data for 20 days. The most important findings found regarding this research can be expressed as follows. (1) When the degassing temperature is observed to be higher than 5°C, the influence on radon value changes greatly. (2) The observations of the radon degassing temperatures in the Yishui well are found to be stable between 18°C and 23°C.

Funder

Shandong Earthquake Agency

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3