Writing Field Analysis for Shingled Bit-Patterned Magnetic Recording

Author:

Li X. G.1ORCID,Liu Z. J.1,Kang A. G.1,Xie X. Y.1

Affiliation:

1. College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan, China

Abstract

A novel method utilizing response surface methodology (RSM) is proposed for effective analysis of the combined influence of writing head geometry and media properties on writing field performance. The method comprises two main modules: (1) a parametric writing head model based on finite element electromagnetic field analysis and (2) an effective writing field gradient model based on RSM. Using the method proposed, the writing performance of an asymmetrically shielded writing head for shingled magnetic recording on bit-patterned media (SMR-BPM) is analyzed. The results show that the shielding trailing gap and medium coercivity primarily impact the effective writing field (EWF) gradient and that the shielding side gap has a secondary impact. More importantly, the analysis shows a strong interaction effect between the influences of writing head geometry and medium coercivity on the EWF gradient, which indicates the need for inclusive design.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3