Monitoring and Forecasting Air Pollution Levels by Exploiting Satellite, Ground-Based, and Synoptic Data, Elaborated with Regression Models

Author:

Michaelides Silas1ORCID,Paronis Dimitris2,Retalis Adrianos3ORCID,Tymvios Filippos14

Affiliation:

1. The Cyprus Institute, 2121 Aglantzia, Nicosia, Cyprus

2. Institute for Astronomy, Astrophysics, Space Application & Remote Sensing, National Observatory of Athens, 15236 Athens, Greece

3. Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236 Athens, Greece

4. Department of Meteorology, 1086 Nicosia, Cyprus

Abstract

This paper presents some of the results of a project that aimed at the design and implementation of a system for the spatial mapping and forecasting the temporal evolution of air pollution from dust transport from the Sahara Desert into the eastern Mediterranean and secondarily from anthropogenic sources, focusing over Cyprus. Monitoring air pollution (aerosols) in near real-time is accomplished by using spaceborne and in situ platforms. The results of the development of a system for forecasting pollution levels in terms of particulate matter concentrations are presented. The aim of the present study is to utilize the recorded PM10 (particulate matter with aerodynamic diameter less than 10 μm) ground measurements, Aerosol Optical Depth retrievals from satellite, and the prevailing synoptic conditions established by Artificial Neural Networks, in order to develop regression models that will be able to predict the spatial and temporal variability of PM10 in Cyprus. The core of the forecasting system comprises an appropriately designed neural classification system which clusters synoptic maps, Aerosol Optical Depth data from the Aqua satellite, and ground measurements of particulate matter. By exploiting the above resources, statistical models for forecasting pollution levels were developed.

Publisher

Hindawi Limited

Subject

Atmospheric Science,Pollution,Geophysics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3