Aerodynamic Parameter Identification of Projectile Based on Improved Extreme Learning Machine and Ensemble Learning Theory

Author:

Wang Tianyi1ORCID,Yi Wenjun1,Xia Youran1

Affiliation:

1. Nanjing University of Science and Technology, Nanjing, China

Abstract

The firing accuracy of the projectile has a positive relation with aerodynamic parameters. Due to the complex dynamic characteristics of projectiles, there is an overfitting risk when a single extreme learning machine (ELM) is used to identify the aerodynamic parameters of the projectile, and the identification results oscillate transonic region. To obtain the aerodynamic parameters of the projectile accurately, an aerodynamic parameter identification model based on ensemble learning theory and ELM optimized by improved particle swarm optimization is proposed. The improved particle swarm optimization algorithm (IPSO) with an adaptive update strategy is used to optimize the weight and threshold of ELM. Combined with the ensemble learning theory, the improved ELM neural network is regarded as a weak learner to generate a strong learner. The structural parameters of the strong learner were continuously optimized through training, and an aerodynamic parameter identification model of projectile based on ensemble learning theory is obtained. The simulation results show that the introduction of the IPSO and ensemble learning theory enables the model to exhibit excellent generalization ability. The proposed identification model can accurately describe the variation of aerodynamic parameters with the Mach number.

Publisher

Hindawi Limited

Subject

Aerospace Engineering

Reference64 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3