Dimensional Learning Strategy-Based Grey Wolf Optimizer for Solving the Global Optimization Problem

Author:

Liu Xinyang1ORCID,Wang Yifan1ORCID,Zhou Miaolei1ORCID

Affiliation:

1. Department of Control Science and Engineering, Jilin University, Changchun 130022, China

Abstract

Grey wolf optimizer (GWO) is an up-to-date nature-inspired optimization algorithm which has been used for solving many of the real-world applications since it was proposed. In the standard GWO, individuals are guided by the three dominant wolves alpha, beta, and delta in the leading hierarchy of the swarm. These three wolves provide their information about the potential locations of the global optimum in the search space. This learning mechanism is easy to implement. However, when the three wolves are in conflicting directions, an individual may not obtain better knowledge to update its position. To improve the utilization of the population knowledge, in this paper, we proposed a grey wolf optimizer based on the dimensional learning strategy (DLGWO). In the DLGWO, the three dominant wolves construct an exemplar wolf through the dimensional learning strategy (DLS) to guide the grey wolves in the swarm. Thereafter, to reinforce the exploration ability of the algorithm, the Levy flight is also utilized in the proposed method. 23 classic benchmark functions and engineering problems are used to test the effectiveness of the proposed method against the standard GWO, variants of the GWO, and other metaheuristic algorithms. The experimental results show that the proposed DLGWO has good performance in solving the global optimization problems.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Reference73 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3