A Simulation Study to Compare the Predictive Performance of Survival Neural Networks with Cox Models for Clinical Trial Data

Author:

Kantidakis Georgios123ORCID,Biganzoli Elia4ORCID,Putter Hein2ORCID,Fiocco Marta125ORCID

Affiliation:

1. Mathematical Institute Leiden University, Niels Bohrweg 1, 2333 CA Leiden, Netherlands

2. Department of Biomedical Data Sciences, Section Medical Statistics, Leiden University Medical Center (LUMC), Albinusdreef 2, 2333 ZA Leiden, Netherlands

3. Department of Statistics, European Organisation for Research and Treatment of Cancer (EORTC) Headquarters, Ave E. Mounier 83/11, 1200 Brussels, Belgium

4. Department of Clinical Sciences and Community Health & DSRC, University of Milan, Fondazione IRCCS Istituto Nazionale Tumori, Via Giacomo Venezian 1, 20133 Milan, Italy

5. Trial and Data Center, Princess Máxima Center for Pediatric Oncology (PMC), Heidelberglaan 25, 3584 CS Utrecht, Netherlands

Abstract

Background. Studies focusing on prediction models are widespread in medicine. There is a trend in applying machine learning (ML) by medical researchers and clinicians. Over the years, multiple ML algorithms have been adapted to censored data. However, the choice of methodology should be motivated by the real-life data and their complexity. Here, the predictive performance of ML techniques is compared with statistical models in a simple clinical setting (small/moderate sample size and small number of predictors) with Monte-Carlo simulations. Methods. Synthetic data (250 or 1000 patients) were generated that closely resembled 5 prognostic factors preselected based on a European Osteosarcoma Intergroup study (MRC BO06/EORTC 80931). Comparison was performed between 2 partial logistic artificial neural networks (PLANNs) and Cox models for 20, 40, 61, and 80% censoring. Survival times were generated from a log-normal distribution. Models were contrasted in terms of the C-index, Brier score at 0-5 years, integrated Brier score (IBS) at 5 years, and miscalibration at 2 and 5 years (usually neglected). The endpoint of interest was overall survival. Results. PLANNs original/extended were tuned based on the IBS at 5 years and the C-index, achieving a slightly better performance with the IBS. Comparison with Cox models showed that PLANNs can reach similar predictive performance on simulated data for most scenarios with respect to the C-index, Brier score, or IBS. However, Cox models were frequently less miscalibrated. Performance was robust in scenario data where censored patients were removed before 2 years or curtailing at 5 years was performed (on training data). Conclusion. Survival neural networks reached a comparable predictive performance with Cox models but were generally less well calibrated. All in all, researchers should be aware of burdensome aspects of ML techniques such as data preprocessing, tuning of hyperparameters, and computational intensity that render them disadvantageous against conventional regression models in a simple clinical setting.

Funder

Leiden University

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modelling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3