Damage Detection of Laminated Rubber Bearings Based on the Antiresonance Frequencies of Periodic Structure and Its Sensitivity Analysis

Author:

Zhang Ying1ORCID,Zhu Hongping1,Weng Shun1ORCID

Affiliation:

1. School of Civil & Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

An isolation bearing consumes most of the seismic energy of a structure and is vulnerable to destruction. The performance of isolation bearings is usually evaluated according to the global stiffness and energy dissipation capacity. However, the early minor damage in isolation bearings is difficult to identify. In this study, a damage detection scheme for the isolation bearing is proposed by focusing on the antiresonance of the quasiperiodic structure. Firstly, a laminated rubber bearing was simplified as a monocoupled periodic rubber-steel structure. The characteristic equation of the driving point antiresonance frequency of the periodic system was achieved via the dynamic stiffness method. Secondly, the sensitivity coefficient of the driving point antiresonance, which was obtained from the first-order derivative of the antiresonance frequency, with respect to the damage scaling parameter was derived using the antiresonance frequency characteristic equation. Thirdly, the optimised driving points of the antiresonance frequencies were selected by means of sensitivity analysis. Finally, from the measured changes in the antiresonance frequencies, the damage was identified by solving the sensitivity identification equation via a numerical optimisation method. The application of the proposed method to laminated rubber bearings under various damage cases demonstrates the feasibility of this method. This study has proven that changes in the shear modulus of each rubber layer can be identified accurately.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Reference37 articles.

1. On highly compressible helical springs and rubber rods, and their application for vibration-free mountings, III;J. A. Haringx;Philips Research Reports,1949

2. Earthquake-Resistant Design with Rubber

3. Stability and post-buckling behavior in nonbolted elastomeric isolators

4. Modeling of laminated rubber bearings using an analytical stiffness matrix

5. Elastic stability of rubber compression springs

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3