Reactive Oxygen Species are Essential for Placental Angiogenesis During Early Gestation

Author:

Yang Yike12,Jin Huili13,Qiu Yuhan4,Liu Yamin5,Wen Li1,Fu Yong1ORCID,Qi Hongbo15ORCID,Baker Philip N.6,Tong Chao1ORCID

Affiliation:

1. State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China

2. Department of Obstetrics, Peking University Third Hospital, Beijing 100191, China

3. Department of Obstetrics, The Affiliated Hospital of Guizhou Medical University, Guiyang 550004, China

4. Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China

5. Department of Obstetrics, Women and Children’s Hospital of Chongqing Medical University, Chongqing 401147, China

6. College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK

Abstract

Background. Preeclampsia (PE) is associated with insufficient placental perfusion attributed to maldevelopment of the placental vasculature. Reactive oxygen species (ROS) are implicated in angiogenesis, but their regulatory effects and mechanisms in placental vascular development remain unclear. Methods. Placental oxidative stress was determined throughout gestation by measuring 4-hydroxynonenal (4HNE) and malondialdehyde (MDA). The antioxidant MitoQ was administered to pregnant mice from GDs 7.5 to 11.5; placental morphology and angiogenesis pathways were examined on GDs 11.5 and 18.5. Moreover, we established a mouse mFlt-1-induced PE model and assessed blood pressure, urine protein levels, and placental vascular development on GDs 11.5 and 18.5. Human umbilical vein endothelial cells (HUVECs) were treated with various H2O2 concentrations to evaluate cell viability, intracellular ROS levels, and tube formation capability. MitoQ, an AKT inhibitor and an ERK1/2 inhibitor were applied to validate the ROS-mediated mechanism regulating placental angiogenesis. Results. First-trimester placentas presented significantly higher MDA and 4HNE levels. MitoQ significantly reduced the blood vessel density and angiogenesis pathway activity in the placenta on GDs 11.5 and 18.5. Serum sFlt-1 levels were elevated, and we observed poor placental angiogenesis and PE-like symptoms in cases with mFlt-1 overexpression. Moderate H2O2 treatment promoted HUVEC proliferation and angiogenesis, whereas these improvements were abolished by MitoQ, AKT inhibitor, or ERK1/2 inhibitor treatment. Conclusions. Moderate ROS levels are essential for placental angiogenesis; diminishing ROS with potent antioxidants during placentation decreases placental angiogenesis and increases PE risk. Therefore, antioxidant therapy should be considered carefully for normal pregnant women during early gestation.

Funder

Chongqing Health Committee

Publisher

Hindawi Limited

Subject

Cell Biology,Aging,General Medicine,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3