Affiliation:
1. College of Finance and Statistics, Hunan University, Hunan, China
Abstract
In this paper, we extend the Johansen-Ledoit-Sornette (JLS) model by introducing fundamental economic factors in China (including the interest rate and deposit reserve rate) and the historical volatilities of targeted and US equity indices into the original model, which is a flexible tool to detect bubbles and predict regime changes in financial markets. We then derive a general method to incorporate these selected factors in addition to the log-periodic power law signature of herding and compare the prediction accuracy of the critical time between the original and the new JLS models (termed the JLS-factor model) by applying these two models to fit two well-known Chinese stock indices in three bubble periods. The results show that the JLS-factor model with Chinese characteristics successfully depicts the evolutions of bubbles and “antibubbles” and constructs efficient end-of-bubble signals for all bubbles in Chinese stock markets. In addition, the results of standard statistical tests demonstrate the excellent explanatory power of these additive factors and confirm that the new JLS model provides useful improvements over the standard JLS model.
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献