A Maximum Entropy Multisource Information Fusion Method to Evaluate the MTBF of Low-Voltage Switchgear

Author:

Wang Jing-Qin1,Zhang Zhi-Gang1,Wang Ching-Hsin2ORCID,Wang Li1

Affiliation:

1. School of Electrical Engineering, Hebei University of Technology, Tianjin 300130, China

2. Institute of Project Management, Department of Leisure Industry Management, National Chin-Yi University of Technology, Taichung 41170, Taiwan

Abstract

When analyzing the reliability of low-voltage switchgear by Bayesian method, the maximum entropy multisource information fusion method was proposed to obtain the prior information of low-voltage switchgear and then evaluate the reliability. The historical data of low-voltage switchgear was collected and organized from a manufacturer. According to the expert experience and the data, the creditability analysis and the compatibility test were presented by the Smirnov test method. Based on the high creditability and compatibility, the result of the maximum entropy multisource information fusion method is the determination of prior information. Therefore, the distribution type of the prior information was confirmed by using the maximum entropy method, and the parameter of the prior information was received by bootstrap method with MATLAB. Then the posterior distribution was obtained to evaluate the MTBF of low-voltage switchgear. Finally, the historical data of years from 2007 to 2010 was taken as prior information to illustrate the maximum entropy multisource information fusion method and to get the MTBF of low-voltage switchgear. The evaluation result reduces the experimental period and test cost, which is an improvement for the reliability evaluation and management of low-voltage switchgear and also an improvement for other systems with simple sample data. Compared with traditional Bayesian networks, the proposed method can fuse experts experience and historical data and has advantages for the use of prior information effectively.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3