Affiliation:
1. School of Design and Art, Xijing University, Xi'an, Shaanxi 710123, China
Abstract
The recommendation engine is similar to the function of the product recommender in our real life, which provides great convenience for people to choose the appropriate decoration scheme in the process of interior design and decoration. A home improvement website or company can design a suitable recommendation algorithm to provide home improvement program recommendation services for users with decoration needs. After understanding the user behavior of the home decoration website, this paper proposes an interior design scheme recommendation method based on an improved collaborative filtering algorithm. The method designs a collaborative filtering algorithm that combines multilayer hybrid similarity and trust mechanisms. Fuzzy set membership function is introduced to correct users’ rating similarity, and users’ interest vector is extracted to calculate users’ preference for different types of items. The algorithm dynamically fuses those two aspects to obtain the mixed similarity of users; meanwhile, the user’s hybrid similarity and trust are fused in an adaptive model. Then, the user neighbor data set generated based on the overall similarity of users is used as a training set, taking the item scores and features into consideration. On the one hand, the users and the projects are taken into account as well. The final prediction score is more accurate, and the recommendation effect is better. The experimental results show that this method can recommend interior design schemes with high performance, and its performance is better than other methods.
Funder
Education Department of Shaanxi Province
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献