Silymarin and Vanillic Acid Silver Nanoparticles Alleviate the Carbon Tetrachloride-Induced Nephrotoxicity in Male Rats

Author:

El Rabey Haddad A.12ORCID,Alamri Eman S.3,Alzahrani Othman R.4,Salah Nouran M.5,Attia Eman S.6,Rezk Samar M.7

Affiliation:

1. Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia

2. Bioinformatics Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt

3. Department of Nutrition and Food Science, University of Tabuk, Tabuk 47512, Saudi Arabia

4. Department of Biology, University of Tabuk, Tabuk 47512, Saudi Arabia

5. Department of Microbiology and Immunology, Faculty of Pharmacy, Menoufia University, Shebin Elkom, Menoufia, Egypt

6. National Nutrition Institute, Ministry of Health, Cairo 4262114, Egypt

7. Clinical Nutrition Department, Mahalla Hepatology Teaching Hospital, Gharbyia, El-Mahalla El-Kubra, Egypt

Abstract

Natural copolymer (e.g., chitosan-loaded) and synthetic (e.g., silver nitrate-loaded) nanopolymers have many medical applications in drug delivery research for enhancing the effectuality of traditional medicine. This study aimed to investigate the potential protective activity of vanillic acid, silver nanoparticles (AgNPs) of vanillic acid, and silymarin against carbon tetrachloride (CCl4)-induced nephrotoxicity in male rats. Rats were divided into five groups; the first group (G1) was a negative control, and the other rats were treated intraperitoneally with CCl4 to induce kidney toxicity twice weekly, and then divided into four groups, G2 was a positive control and left without treatment, the third group was treated with vanillic acid, the fourth (G4) was treated with vanillic acid-AgNPs, and the fifth (G5) was treated with silymarin. In G2, renal function indices (urea, creatinine, and uric acid) showed elevated levels indicating renal toxicity. Na, K, and Ca ions were decreased, whereas Cl− was increased. Antioxidants (glutathione S-transferase, glutathione reduced, total antioxidant capacity, superoxide dismutase, and catalase) were decreased, whereas lipid peroxidation was increased in the kidney tissue homogenate. IL1 was increased, whereas CYP-450 was decreased. In the treated group, all biochemical and renal tissue texture were alleviated as a result of treatment with vanillic acid in G3, vanillic acid AgNPs in G4, and silymarin in G5. Vanillic acid AgNPs and silymarin treatment in G4 and G5, respectively, were more efficient than vanillic acid in G5 in protecting the kidneys against CCl4-induced nephrotoxicity.

Funder

Deanship of Scientific Research at University of Tabuk

Publisher

Hindawi Limited

Subject

Polymers and Plastics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3