Preparation of Drug Sustained-Release Scaffold with De-Epithelized Human Amniotic Epithelial Cells and Thiolated Chitosan Nanocarriers and Its Repair Effect on Spinal Cord Injury

Author:

Zhu Lijuan1ORCID,Tian Shaohua2ORCID,Li Zhiyong2ORCID,Fan Dandan2ORCID,Gao Hongwei2ORCID,Zhang Hongyu2ORCID,Bao Zhengqing2ORCID,Zhang Wenlong2ORCID

Affiliation:

1. Neurology Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, Heilongjiang, China

2. Orthopedics Department, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar 161000, Heilongjiang, China

Abstract

The disability rate of spinal cord injury (SCI) is extremely high, and stem cell inhibition is one of the most effective schemes in treating the spinal cord, but the survival rate is extremely low after stem cell transplantation, so it cannot be widely used in clinic. Studies have revealed that loading stem cells with biological scaffolds can effectively improve the survival rate and effect after stem cell transplantation. Therefore, this research was devised to analyze the repair effect of thiolated chitosan nanocarriers scaffold carrying de-epithelized human amniotic epithelial cells (HAECs) on SCI. And we used thiolated chitosan as nanocarriers, aiming to provide a reliable theoretical basis for future clinical practice. Through experiments, we concluded that the Tarlov and BBB scores of rats with SCI were raised under the intervention of thiolated chitosan carrying HAECs, while the inflammatory factors in serum, oxidative stress reaction in spinal cord tissue, apoptosis rate of nerve cells, and autophagy protein expression were all suppressed. Thus, the thiolated chitosan carrying HAECs may be applied to treat SCI by suppressing autophagy protein expression, oxidative stress response, and release of inflammatory factors in spinal cord tissue, which may be a new clinical therapy for SCI in the future. Even though we cannot understand exactly the therapeutic mechanism of thiolated chitosan carrying HAECs for SCI, the real clinical application of thiolated chitosan carrying HAECs needs to be confirmed by human experiments.

Funder

Qiqihar Science and Technology Bureau

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3