Handover Optimization Algorithm Based on T2RFS-FNN

Author:

Chen Yong1ORCID,Niu Kaiyu1,Zhang Wei2

Affiliation:

1. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China

2. School of Traffic and Transportation, Lanzhou Jiaotong University, Lanzhou 730070, China

Abstract

As a key technology for highly reliable communication in the fifth generation mobile communication for railway (5G-R) high-speed railway wireless communication system, once the handover fails, it will pose a serious risk to the safe operation of high-speed railway. As the speed of high-speed trains continues to increase, the handover will become more frequent, and how to improve the success rate of the handover is a key problem that needs to be solved. In this paper, we proposed an optimization algorithm based on the interval type 2 feature selection recurrent fuzzy neural network (T2RFS-FNN), which is a recurrent fuzzy neural network with interval type 2 feature selection, to address the problem of fixed hysteresis threshold and single consideration for the handover algorithm between the control plane and the user plane of the high-speed railway under 5G-R. The algorithm integrates reference signal receiving power (RSRP). Reference signal receiving quality (RSRQ) and throughput to optimise the hysteresis threshold. First, a feedforward neural network structure is designed to implement fuzzy logic inference, and an interval type-two Gaussian subordination function is used to improve the nonlinear expressiveness of the model. Then, a feature selection layer is added to determine the output of the affiliation function, which completes the optimization of the hysteresis threshold and overcomes the drawback of the fixed hysteresis threshold of the handover algorithm. Finally, simulation analysis of the control-plane and user-plane handover algorithms is carried out separately. The results show that the proposed method can effectively improve the success rate and reduce the ping-pong handover rate compared to the comparison algorithms. The results provide a theoretical reference for the speedup of high-speed railway trains and the evolution of the global system for mobile communications for railway (GSM-R) to 5G-R.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3